Adaptive neuro fuzzy controller for adaptive compliant robotic gripper

نویسندگان

  • Dalibor Petkovic
  • Mirna Issa
  • Nenad D. Pavlovic
  • Lena Zentner
  • Zarko Cojbasic
چکیده

The requirement for new flexible adaptive grippers is the ability to detect and recognize objects in their environments. It is known that robotic manipulators are highly nonlinear systems, and an accurate mathematical model is difficult to obtain, thus making it difficult no control using conventional techniques. Here, a novel design of an adaptive neuro fuzzy inference strategy (ANFIS) for controlling input displacement of a new adaptive compliant gripper is presented. This design of the gripper has embedded sensors as part of its structure. The use of embedded sensors in a robot gripper gives the control system the ability to control input displacement of the gripper and to recognize particular shapes of the grasping objects. Since the conventional control strategy is a very challenging task, fuzzy logic based controllers are considered as potential candidates for such an application. Fuzzy based controllers develop a control signal which yields on the firing of the rule base. The selection of the proper rule base depending on the situation can be achieved by using an ANFIS controller, which becomes an integrated method of approach for the control purposes. In the designed ANFIS scheme, neural network techniques are used to select a proper rule base, which is achieved using the back propagation algorithm. The simulation results presented in this paper show the effectiveness of the developed method. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Input Displacement Neuro-fuzzy Control and Object Recognition by Compliant Multi-fingered Passively Adaptive Robotic Gripper

The requirement for new flexible adaptive grippers is the ability to detect and recognize objects in their environments. It is known that robotic manipulators are highly nonlinear systems, and an accurate mathematical model is difficult to obtain, thus making it difficult make decision strategies using conventional techniques. Here, an adaptive neuro fuzzy inference system (ANFIS) for controlli...

متن کامل

An indirect adaptive neuro-fuzzy speed control of induction motors

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...

متن کامل

Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces

0957-4174/$ see front matter 2012 Elsevier Ltd. A http://dx.doi.org/10.1016/j.eswa.2012.07.076 ⇑ Corresponding author. E-mail address: [email protected] (D. Petković) It is known that robotic manipulators are highly nonlinear systems, and an accurate mathematical model is difficult to obtain, thus making it difficult to analyze with conventional analytical methods. Here, a novel design of an ...

متن کامل

Design and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System

Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....

متن کامل

Active Suspension System Control Using Adaptive Neuro Fuzzy (ANFIS) Controller

The purpose of designing the active suspension systems is providing comfort riding and good handling in different road disturbances. In this paper a novel control method based on adaptive neuro fuzzy system in active suspension system is proposed. Choosing the proper data base to train the ANFIS has an important role in increasing the suspension system’s performance. The data base which is used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012